
!"f Fvtvru m

LABORATORY FOR INMASSACHUSETTSF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-359

SIMULATING
SYNCHRONOUS

PROCESSORS

Jennifer Lundelius Welch

DTIC
ELECTE

AG1 6 1988

June 1988 H

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

D--S-hIBL ON STATN1INT A

Approv-d fox pblic relm;
Ditrbution Unlntted .

SECURITY CiLASSIICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified _E21a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABIUTY OF REPORT

2b. DECLASSIFICATION/DOWNGRAD'NG SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-359 N00014-83-K-0125, N00014-85-K-0168

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (f applicable) Office of Naval Research/Department of Navy
Science I

6c. ADDRESS (fty State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

go. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

DARPA/DOD I

8c. ADDRESS (Ct, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE Include Security Classification)

Simulating Synchronous Processors

12. PERSONAL AUTHOR(S)
Welch Jennfier Lundelius

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Technical FROM TO 1988 June 15

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Distributed systems, fault tolerance, simulation, con-
sensus problem, impossibility proofs

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In this paper we show how a distributed system with synchronous processors and asynchro-

nous message delays can be simulated by a system with both asynchronous processors and

asynchronous message delays in the presence of various types of processor faults. Con-

sequently, the result of Fischer, Lynch and Paterson (1985), that no consensus protocol

for asynchronous processors and communication can tolerate one failstop fault, implies

a result of Dolev, Dwork and Etockmeyer (1987), that no consensus protocol for synchro-

nous processors and asynchronous communication can tolerate one failstop fault.

IL

20. DISTRIBUTION/AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(j UNCLASSIFIEOiuNUMITED C SAME AS RPT. 0] DTIC USERS Unclassified

22a. NAME OF RESPONSISLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OF-FICE SYMBOL

Judv Little. Publications Coordinator (617) 253-5894 1

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

Unclassified

Simulating Synchronous Processors*

Jennifer Lundelius Welch
Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract:

In this paper 'we show how a distributed system with synchronous processors
and asynchronous message delays can be simulated by a system with both asyn-
chronous processors and asynchronous message delays in the presence of various
types of processor faults. Consequently, the result of Fischer, Lynch and Paterson

(1985), that no consensus protocol for asynchronous processors and communication

can tolerate one failstop fault, implies a result of Dolev, Dwork and Stockmeyer
(1987), that no consensus protocol for synchronous processors and asynchronous
communication can tolerate one failstop fault.

Keywords: Distributed systems, fault tolerance, simulation, consensus problem,

impossibility proofs.

*This work was supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract N00014-83-K-0125, by the National Science Foundation
under Grants DCR-83-02391 and CCR-8611442, by the Office of Army Research
under Contract DAAG29-84-K-0058, and by the Office of Naval Research under

Contract N00014-85-K-0168.

1

110 1 -

1. Introduction

In this paper we show how a distriblted system with synchronous processors

and asynchronous message delays can be simulated by a system in which both

processors and messages are asynchronous, in the presence of various types of pro-

cessor failures. One application of this result is that now a result of Dolev, Dwork

and Stockmeyer (1987), that no fault-tolerant consensus protocol is possible in a

distributed system with asynchronous communication even if processors are syn-

chronous, follows easily from the result of Fischer, Lynch and Paterson (1985), that

no fault-tolerant consensus protocol is possible when communication and processors

are asynchronous.

The equivalence of a system with synchronous processors and asynchronous

communication to one in which both processors and communication are asyn-

chronous has been a folk theorem in distributed computing circles for some time.

One of the contributions of this paper is to present a careful statement and proof

of this result, using a variant of Lamport clocks (Lamport, 1978). We have made

precise a notion of simulation particularly suited to showing impossibility results.

The novel feature of this paper is applying the simulation result to obtain an easy

proof of the impossibility of fault-tolerant consensus for synchronous processors and

asynchronous communication.

The sense in which we show that the two systems are equivalent is that no

processor can tell if it is in one system or the other. Of course, an outside observer

can tell the difference. For instance, if all the processors are to perform some action

at their tenth step, the effect could be quite different with synchronous processors

(where the actions would happen at the same real time) than with asynchronous

processors (where the actions do not necessarily happen at the same real time).

Thus, the notion of simulation that we define preserves local views, but not global

views.

We observe that the only situation visible to a processor in the system with

asynchronous processors that cannot happen in the system with synchronous pro-

cessors is for the processor to receive a message at its i t step that was sent at

the sender's jth step, where j > i. To avoid this anomalous situation, our simula-

tion tags all messages '.%ih the swidc 's cunuitci .. p n ,iQbcr; then processors save

messages that arrive too early, and wait to process them until they are no longer

early. (Compare Lamport clocks, which cause the local clock, or step counter, to

skip ahead when a message with too large a timestamp arrives.)

2

Neiger and Toueg (1986) have independently developed the same simulation
technique. However, they do not consider faults, and they apply the simulation
to different problems, namely, determining when one can substitute these modified

Lamport clocks for real time clocks while maintaining correctness, and determining
when a variant of common knowledge, achieved with the help of this simulation, can

be substituted for the standard notion of common knowledge. Their paper formally
characterizes types of behavior that can be preserved by this simulation.

Our formal model is presented in Section 2. In Section 3 we show how to do the
simulation for Byzantine processor faults. Simplifications for weaker fault models
are presented in Section 4. Finally, Section 5 demonstrates that the result of Dolev,
Dwork and Stockmeyer (1987) follows from that of Fischer, Lynch and Paterson

(1985).

2. Model

We model a general distributed system in which processors communicate by
sending messages. Conceptually, there is a global clock that measures time in
integer ticks. At each tick, some processors take steps, in which they can atomically
receive messages, change state and send messages. A message buffer holds messages
between the sending and receiving times. A protocol determines for each processor
the state changes and messages sent, given the old state and messages received.
A run of the protocol specifies at each tick which processors take steps and which
messages are received. Various kinds of faulty processor behaviors are introduced
next. After formally defining what a system is in this general model, we define the

type of simulation we are concerned with.

2.1 Basic Model

Messages are assumed to be unique and are tagged with both the sender's and
recipient's names by the message system. The message buffer holds messages that on For
have been sent but not yet received. It is modeled as a set of messages. A processor
is a deterministic state machine with a set of states, and a transition function that 13
uses the current state and messages received to compute the new state and messages

to be sent (at most one message to each processor). Certain states are designated

initial states. A protocol is a set of rt processors. In our terminology, a processor is
more than just bare hardwvare -- it includes the local algorithm for changing state tio/ _.. ..- • - hilitv Codes [
and sending messages. A protocol is the collection of all the local algorithms. A- Co

3

af iI,

A step of processor p is designated either a, indicating that p does some com-

putation, or A, indicating that p does nothing. An a step is an active step. A

processor history for processor p, Hp, consists of an infinite sequencc d, .s d2s...., of

states di of p alternating with steps si of p such that di is an initial state, and if

si = /\, then di = di+i. The jth state of Hp is denoted state(Hp, i), and the ih step

step(Hp, i). Given processor history Hp and integer i, define active(Hp, i) to be the

number of active steps in Hp up to and including the ith step. A message buffer

history HB is an infinite sequence M1 M 2 ... , where each Mi is a set of messages

and M1 = 0, such that if message m is in M and not in Mi+1 , then m is not in Mlj

for any j > i. The ith element of HB is denoted by msgs(Hn, i).

A run R of protocol P consists of n processor histories Hp, one for each pro-

cessor p in P, and a message buffer history HB such that the following are true.

Suppose message m has sender p and recipient q, and i is the smallest integer such

that m is in rnsgs(HB, i). (1) Then step(H, i - 1) is active. We say in is sent

by p at step i - 1. (2) Furthermore, if j is the greatest integer such that m is in

msgs(HB,j), then step(Hq,j) is active. We say in is received by q at step j.

Given a processor history Hp, define statcs(Hp) to be the (finite or infinite)
sequence of states dd 2 ... , where d, = state(H, 1) and dj+l is the state following

the ith active step in Hp. (The do-nothing steps have been eliminated and the
state transitions isolated.) For a run R = (Ht, {Hp}pEp), define states(R) to be

{states(Hp)}pEp.

Various types of processor faults are now considered, classified by their observ-

able effects. Suppose processor p has processor history Hp = d, s, d2 S2 ... in run R.

Fix i and let M be the set of messages received by p at step si, and let M' be the

set of messages sent by p at step si. Processor p operates correctly at step si, if dj+i

is the result of p's transition function applied to di and .!, and if -A' is exactly the

set of messages returned by p's transition function applied to di and Al. Processor

p exhibits an omission failure upon sending at .s if di+ I is the result of p's transition

function applied to di and a subset S of -1, and M' is a strict subset of the set

of messages returned by p's transition function applied to di and S. Processor p

exhibits an omission failure upon receiving at .j if p does not operate correctly at

si, but p's transition function applied to di and a strict subset of M produces dj+ 1

and a set of messages of which Al' is a subset. A message not used by the transition

function, or not placed in the message buffer is omitted. (Note that these definitions

allow a processor to exhibit an omission failure upon both sending and receiving at
the same step.) Processor p exhibits a Byzantivc fail.ure at si if di+I and .1l' cannot

4

be described as the result of p's operating correctly, or p's exhibiting an omission

failure upon sending or receiving.

Processor p is nonfaulty in run R if it takes an infinite number of active steps
and operates correctly at each one; otherwise p is faulty. Faulty processor p is
failstop-faulty in run R if it takes only a finite number of active steps and operates
correctly at each one. Faulty processor p is omission-faulty in run R if p is not
failstop-faulty, and at each active step p either operates correctly or exhibits an
omission failure upon sending or receiving. Faulty processor p is Byzantine-faulty
in run R if p is not failstop-faulty or omission-faulty, and at each active step p
operates correctly, exhibits an omission failure, or exhibits a Byzantine failure.

I

The next definition concerns communication faults. A message m sent in an
infinite run is lost if the recipient takes infinitely many active steps but never receives
-n.

2.2 Systems

We are interested in restricting the allowable runs (of any protocol) in different
ways. Fix a protocol P. Let runs(P) be the set of all runs of P. Define the universe
of all runs, U, to be Uall p runs(P). A system is a subset of U. The system U can be
characterized as having unreliable, asynchronous communication, since it includes
runs in which messages are lost and runs in which messages remain in the buffer
for arbitrarily long periods of time. Similarly, U has asynchronous processors, since
there is no restriction on the number of A steps between consecutive active steps in
a processor history. There is also no restriction on the number or types of processor
faults exhibited, when all the runs of U are considered.

The following systems are used as building blocks in this paper.

" System SP: the set of all runs such that if a processor takes a A step, then all
subsequent steps of that processor are A steps. This system has synchronous
processors. The processors can know the global clock value, because it is the
same as the number of active steps they have taken.

" System RC: the set of all runs such that no messages are lost. This system has

asynchronous, but reliable, communication.

We can restrict the number and type of faults to be considered by defining:

" System FS(t): the set of all runs such that at most t processors are failstop-

faulty, and the rest are nonfaulty.

5

" System OM(t): the set of all runs such that at most t processors are omission-

faulty or failstop-faulty, and the rest are 1ionfaulty.

" System BZ(t): the set of all runs such that at most t processors are Byzantine-
faulty, omission-faulty or failstop-faulty, and the rest are nonfaulty.

2.3 Simulations

A simulation function fp, for processors p' and p is a function from states of p'
to states of p. Extend fp, to map sequences of states of p' to sequences of states of

p by defining fp,(d d2 ...) = fp,(dj)fp,(d 2).

Run R' = HB,, {HP,,'Ep') of protocol P' simulates run R = (HB, {H}EP)
of protocol P via set F = ffp, : P' E P'} of simulation functions, if there exists a
one-to-one correspondence c between processors of P' and processors of P with the

following properties. Fix p' in P', and let p = c(p'). (1) The simulation function
fpg for p' and p satisfies f,(states(H,,)) = states(H,). (2) If p' is nonfaulty in R',
then p is nonfaulty in R. We say processor p' simulates processor p for runs R and

R' via fp,. (The simulation function fp, does not necessarily cause p' to simulate p
for other pairs of runs.)

Protocol P' in system A' simulates protocol P in system A if there exists a set
F of simulation functions such that (1) for every run R' of P' in system A'. there
exists a run R of P in system A such that R' simulates R via F, and (2) for every
run R of P in system A, there is a run R' of P' in system A' such that R' simulatcs
R via F. We call P' a simulation protocol for P relative to A' and A.

System A' simulates system A if. for any protocol P, there exists a protocol P'
such that protocol P' in system A' simulates protocol P in system A.

This definition of simulation is very strong, since the correspondence between
runs of the simulation protocol and runs of the original protocol must be onto. How-
ever, for showing lower bounds or impossibility results, this strength is good, and
in fact is necessary for the application in Section 5. A more appropriate definition
for upper bounds would not require the correspondence to be onto, but would need
some condition on the responses of the simulation protocol to various inputs of the
original protocol, in order to rule out trivial solutions. As discussed in the intro-
duction, this definition of simulation concentrates on the sequences of individual
processors' state transitions, and is not concerned with global behavior that is only

detectable by an observer outside the system.

6

3. Simulating Synchronous Processors with Byzantine Faults

Our goal is to show that if the communication system is asynchronous, then
synchronous processors "don't help" - i.e., a system with asynchronous processors
and asynchronous communication can simulate (the state transitions of) a system
with synchronous processors and asynchronous communication, even if there is any
number of Byzantine-faulty processors. The main idea of the simulation is for each
asynchronous processor to keep track of how many active steps it has taken and
append this number on each message (of the synchronous protocol) sent. The only
situation visible to the processors in the asynchronous case that cannot occur in the
synchronous case is for a processor at its ith active step to receive a message that
was sent at the sender's jih active step, where j > i. To avoid this anomaly, such
"early" messages are simply saved up until the recipient has passed its jth active
step, and then they are used in the simulation.

Although the model of computation presented in this paper gives processors the
ability to receive and send messages in the same atomic step, and to send messages to
all the processors at one step, this power is not necessary for the simulation to work.
If the model is weakened so that processors can send at most one message at a step,
or can only send or receive at a step, but not both, (as studied by Dolev, Dwork and
Stockmeyer (1987)), the same simulation will show that asynchronous processors
can simulate synchronous processors when communication is asynchronous.

Subsection 3.1 describes the simulation protocol for a given synchronous pro-
tocol in more detail. In Subsection 3.2, we show how to map a run of the simulation
protocol to a run of the simulated protocol. The proof of the main result is presented

in Subsection 3.3.

3.1 Simulation Protocol

Fix t between 1 and n. Let system S1(t) be the intersection of systems
BZ(t) and RC and SP. This is the system with at most t Byzantine-faulty pro-
cessors, reliable asynchronous communication and synchronous processors. Let sys-
tem Al(t) be the intersection of systems BZ(t) and RC. This is the system with
at most t Byzantine-faulty processors, reliable asynchronous communication and

asynchronous processors.

Fix a protocol P. We define a simulation protocol P' f)r P relative to Al(t)
and Sl(t) as follows. Each processor p' in P' is assigned a processor p in P to
simulate; it knows the states and transition function for p as well as the processor

7i

-LM

I7UW.JW~dWUUU

correspondence c. Each state d of p' has a component d.sim. It also has components

d.carly, which is a set of messages (to be described below), and d.countcr, which

tells the sequence number of the next active step p' will take. Every message in

that p' sends in the step following state d has the value of d.couiter appended to

it, in a tag called m.tag. Each processor also keeps the necessary information to

decide if message m from p' is the first message from p' with the tag value m.tag.

(More than one such message is only sent if p' is Byzantine-faulty.)

We first describe the states of p'. An initial state d of p' has d.sim equal to

an initial state of p, d.early = 0 and d.counter = 1. There is one initial state of p'

for each initial state of p. Non-initial states are obtained by starting from an initial

state and applying p"s transition function (some number of times).

We now describe p"s transition function. Suppose that p' is in state d and

receives the set of messages Al. Let E be the set of all messages in in Al U d.early

such that m is the first message received from the sender with the tag value n.tag.

Let M' be the set of all messages 7n in E such that in.tag < d.counter. Then p'

calculates the result of the transition function for p applied to d.slm and M' (after

removing the tag components of the messages and applying c to the sender's niame).

Call the results the state d" and the message set M". Let d' be the new state of p';

d'.sim is set equal to d", d'.early is set equal to E - M', and d'.counter is set equal

to d.counter + 1. The messages sent are those in M", each tagged with d.counter.

3.2 Constructing Corresponding Runs

Pick a run R' = (HB,, {Hp,}pEp,) of P' in system Al(t). We describe a

particular run 1? of protocol P corresponding to R'. 'In the next subsection we

show that R is in Sl(t).)

We define the message buffer history H13. Suppose processor p', at its a th

active step, sends message rn' with tag b to processor q'. (As will be discussed in

Section 4, if p' is not Byzantine-faulty. then a = I.) Let ni be the message obtained

from m' by deleting the tag and changing the sender to p and the recipient to q. If

b is anything other than a positive integer (for instance, missing) or if in' is not the

first message received by q' from p' with tag b, then nothing corresponding to 71' is

present in HB. Otherwise, let i = min(a + 1. b + 1). (The goal is for m to be sent

in R either at the same active step when p' actually sends M', or when p' claims,
via the tag, to have sent it, whichever is earlier.) Suppose q' receives in' at its I1h

active step. Let j = max(b + 1, 1). If mn' is never received in Hq,, or if q' takes fewer

than j active steps, then in is in msgs(HB, k) precisely for all k > i. Otherwise nm

8

is in msgs(HB, k) precisely for 1 < k < '. No other messages are present. Clearly

HB is a message history.

We define inductively the processor history HP = disids 2 ... for processor p
in P, which is simulated by processor p' in P'. Let HP, = dsld's'.... For the
basis, d, = dI .sim. Suppose the processor history up to di has been defined. If
there are fewer than i active steps in Hp,, then si -= A and di+i = di. Otherwise,

si = a, and di+j = d.sim, where d' is the state following the th active step in
Hp,. Clearly, the sequence Hp is a processor history for p in P.

Lemma 1: R = (HB, {HplpEP), as defined above, is a run of protocol P.

Proof: We already know that the HP s are processor histories for P. We must
show that the message buffer behaves properly. Suppose message m has sender p
and recipient q, and i is the smallest integer such that m is in msgs(HB, i). (1)
By construction of R, there exists a such that m' (m with tag b) is sent at p"s
a t h active step, and i - 1 = min(a, b). Thus p' takes at least i - 1 active steps,
so step(Hp, i - 1) is active. (2) Suppose m is received in R. Let j be the greatest
integer such that m is in msgs(HB,j). By construction of R, there exists I such
that m is received at q"s lth active step, j = max(b + 1, 1), and q' takes at least j
active steps. Thus, step(Hq, j) is active. 0

3.3 Results

This subsection contains the proof that the simulation protocol actually works.
For the remainder of this section, fix a. run R' of P' in Al(t), and construct run R

from R' as above. Recall that processor p' in P' simulates processor p in P for runs

R' and R.

Lemma 2: Processor p' takes an infinite number of active steps in R' if and only
if p takes an infinite number of active steps in R.

Proof: By construction of R. 0

Nonfaulty, sending omission-faulty and failstop-faulty behaviors are preserved
by the simulation. However, if a processor p' exhibits an omission failure upon
receiving in R' and the message omitted is early, then p in R may exhibit a weaker

form of faulty behavior (or perhaps be nonfaulty). Similarly, if a processor p'
exhibits a Byzantine failure in R' and the Byzantine nature of the error only affects
the tag on a message, then p in R may exhibit a weaker form of faulty behavior (or

pefihq)s be nonifaulty). Lemmas 3 and 4 dnionstrate these facts.

V

SILI

Lemma 3: If p' is not Byzantine-faulty and p' operates correctly at stcp(H,,, i),

then p operates correctly at st-p(Hp,j), wherej = active(Hp,. ;).

Proof: S lpo s" at..st p(l1. i), ' a l 0"' i 1s Iisitloll Iiiti' ioIi t1 tII . :,'I od

messages M', and that p receives the set of messages Ml at step(H,,, j). The following

argument shows that M' = M. We say that a message m' of R' and a message m of

R correspond if the text is the same and the senders and recipients are corresponding
processors (with respect to the simulation). Message m is in Al' if and only if there

is some corresponding message i' such that. m' is the first message received from

the sender in HP, with tag value m'.tag, m'.tag is a positive integer, and n7'.tag < j.

These three conditions al, true if and only if rn is in Al.

By construction of R, state(Hp,j) = state(H,,,i).irn. Since p' operates coi-

rectly at step(H,, i), and it applies p's transition function to statc(Hp,.j) and Ml,

and since state(Hp,j + 1) = state(Hp,,i + 1).sir, p changes state correctly at
step(Hp, j).

Suppose p' sends the set of messages N' at .tcp(,, and 1) sends the set

of messages N at stfp(H,,,j). Since p' operates correctly, we can deduce that,

state(HP,i).countcr j, all the tags of messages in N' are equal to j, there is at

most one message sent to each processor, and no other messages from p' have tag .
(because p' is not Byzantine-faulty). Thus, if m' is in N', then a corresponding 7

is in N, and if in is in N, then a corresponding m,' is in N'.

Thus, p sends the correct messages at step(Hp, j). 0

Lemma 4: (a) If processor j/ is nonfaulty in R', then processor p is nonfaulty in

R.

(b) If processor p' is failstop-faulty in R'. then processor) is failstop-faulty in

R.

(c) If processor p' is omission-faudty in R', then processor p is oinission-faulty,

failstop-faulty or nonfaulty in R.

Proof: Parts (a) and (b) follow friom Lemimas 2 and 3.

(c) The hypothesis that)' is omission-faulty in R' i: equivalent to assuming

that at each active step (of which there are either a finite or infinite number), p'

either operates correctly or exhibits an omission failure. and there is sonie active

step at which p' exhibits an omission failure.

10

%L

By Lemma 3, if p' operates correctly at step(Hp,, i), then p operates correctly

at step(Hpj), where j = active(Hp,, i).

Suppose p' exhibits an omission failure upon sending at step(Hp,, i). Then by

construction of R, p exhibits an omission failure upon sending at step(Hp, j), where

j = active(Hp,, i).

Suppose p' exhibits an omission failure upon receiving at step(Hpi, i), and

one of the messages omitted is m. Let a = active(Hp,,i) and r.tag = b. If

b < a, then by construction of R, p exhibits an omission failure upon receiving

at step(Hp, a) (p' should have used in in the simulation when m was received). If

b > a, then by construction of R, p could exhibit an omission failure upon receiving

at step(Hp, b + 1) (p' should have saved in and used it in the simulation when its

counter reached b + 1). However, it might be the case that the presence or absence

of message m is immaterial to p's state change and set of messages sent, in which

case p operates correctly at step(Hp, b + 1).

Thus, at each active step in R, p either operates correctly, or exhibits an

omission failure. The result follows. 0

Lemma 5: R is in system Sl(t).

Proof: R is in system SP since, by construction of R, once a processor takes a A
step, all subsequent steps are A steps.

Since R' is in system BZ(t), at least n - t processors are nonfaulty in R'. By

Lemma 4, at least n - t processors are nonfaulty in R. Thus, R is in system BZ(t).

Next we show that R is in system RC. Suppose message m is sent in R by

processor p to processor q, and q takes infinitely many active steps. In R', p' sends
message n' (n with tag b for some positive integer b) to q'. Since R' is in system

RC, and since by Lemma 2 q' takes infinitely many active steps, m' eventually

arrives in R', say at q"s 11h active step. Then m is received at step(Hq,j), where

j = max(b + 1,1). 0

Theorem 6: System A1(t) simulates system SI(t), for any value of t, 1 < t < n.

Proof: Fix any protocol P. Let P' be the protocol defined above. We must show

that, protocol P' in system Al(t) sinmlates protocol P in system Sl(t). Let the

correspondence c between processors in P' and processors in P be that implicit in

the construction of P'. Define a set F = {fp, : p' E P'} of simulation functions as

, 11

~ 'p

follows. Fix p' in P' and let p = c(p'). Define simulation function],, from states

of p' to states (f p to be f,,(d') = d'.siM.

The first direction is showing that for every run R' of P' in system Al(t), there

exists a run R of P in system Sl(t) such that R' simulates R via F. Given a run R'

of P' in system Al(t), let R be the run constructed as above. By Lemma 1, R is a

run of P. By Lemma 5, R is in system Sl(t). Now we must show that R' simulates

R via F. By construction of R, fp,(states(Hp,)) = states(Hp). Furthermore, if p'

is nonfaulty in R', then p is nonfaulty in R, by Lemma 4.

The second direction is showing that given a run R of P in Sl(t), there is

a run R' of P' in system Al(t) such that R' simulates R via F. The idea of the

construction is to let processors in R' take the sane steps at exactly the same ticks as

do the processors they are simulating in R, and to let the message delays be exactly

the same. The key is to observe that a run in which processors are synchronous is

also in the system with asynchronous processors (i.e., Sl(t) is a subset of A1(t)).

The following merely formalizes the idea and adds the appropriate tags to the

messages.

Let R = (HB, {Hp}pEP). Define a message buffer histoiy HB, as follows.

Suppose message m from processor p to processor q is in insgs(HB, i) for some i,

and let b be the smallest integer such that in is in insgs(HB, b). Then message 7',

equal to ?n with tag b - 1, from processor p' to processor q', is in insgs(HB,, i). No

other messages are in msgs(HU,, i).

Define processor history Hp, = d sas ... as follows. Let d, be the initial state

of p' with sim component equal to ,tatc(H,,, 1). Suppose Hp, hs been (h(fined up

to d}. Then si = step(Hp, i). If si = ,A, then d,+1 = d'; otherwise let d,+ 1.sirn =

state(Hp, i + 1), d'+i.counter = d .countcr + 1, and di+l.(arly 0. This defines

the states of HP,.

It is straightforward to show that R' = (HR,, {Hp,}p'Ep') is a run of P' in

system Al(t), and that R' simulates R via F. 13

4. Simulating Synchronous Processors with Weaker Faults

If the strongest type of processor fault allowed is omission, then the simulation

and proofs can be slightly simplified. Fix t between 1 and n. Let system S2(t) be the

intersection of systems OM(t) and R.C and SP. Let system A2(t) be the intersection

of systems OM(t) and RC. The same simulation as in Section 3 can be used, except

12

it is no longer necessary to check if a message is the first one with that tag value.

Since no Byzantine faults are considered, the message tag is always the correct active

step count, so in constructing a run of the simulated protocol, variables a and b are

always equal. Furthermore, Lemma 4 implies that each simulated processor has the

same behavior (or better) as its simulating processor.

Theorem 7: System A2(t) simulates system S2(t), for any value of t, 1 < t < n.

The same simplifications apply if the only type of faults is failstop. Fix t

between 1 and n. Let system S3(t) be the intersection of systems FS(t) and RC

and SP. Let system A3 be the intersection of systems FS(t) and RC.

Theorem 8: System A3(t) simulates system S3(t), for any value oft, 1 < t < n.

5. Application

An important result in the theoretical study of distributed systems is that

no consensus protocol operating in a system with asynchronous processors and

asyncnronous communication can be guaranteed to terminate, if it must tolerate

even one failstop processor fault (Fischer, Lynch and Paterson, 1985). This result

was subsequently extended (Dolev, Dwork and Stockmeyer, 1987) to show that

no consensus protocol operating in a system with asynchronous communication,

but with processors in lockstep synchrony, can be guaranteed to terminate, if it

must tolerate even one failstop processor fault. The proof of Dolev, Dwork and

Stockmeyer (1987) followed the spirit of the proof of Fischer, Lynch and Paterson

(1985), but required additional machinery and a more involved argument.

The result of Dolev, Dwork and Stockmeyer (1987) can be seen to be a corollary

of the result of Fischer, Lynch and Paterson (1985), using Theorem 8 of this paper.

Given a system S, a consensus protocol P for S is a protocol that satisfies the

following. (1) Each processor's set of non-initial states has two disjoint subsets, the

0-final states and the 1-final states. Once a processor enters a v-final state, it is

always in a v-final state. (2) There exists a run of P in S in which a processor

enters a 0-final state, and there exists a run of P in S in which a processor enters a

1-final state. (3) For every run of P in system S, if some processor enters a v-final

state, then no processor enters a w-final state for w # v. (4) For every run of P in

system S, some processor enters a v-final state, for some v.

The model of Fischer, Lynch and Paterson (1985) corresponds in our model to

the system A3(1) obtained from the intersection of systems FS(1) and RC, i.e., the

13

system with asynchronous processors, at most one of which is failstop-faulty, and

reliable but asynchronous communication.

Theorem 9: [Fischer, Lynch and Paterson, 1985, Theorem I] There is no consensus

protocol for system A3(1).

The model of Dolev, Dwork and Stockmeyer (1987) corresponds in our model

to the system S3(1) obtained from the intersection of systems FS(1) and SP and

RC, i.e., the system with lockstep-synchronous processors, at most one of which is
failstop-faulty, and reliable but asynchronous communication.

Theorem 10: [Dolev, Dwork and Stockmeyer, 1987, Theorem 10] There is no
consensus protocol for system 33(1).

We now show that Theorem 10 follows from Theorem 9 using the results of

this paper.

Theorem 11: If there is no consensus protocol for system A3(1), then there is no
consensus protocol for system S3(1).

Proof: Suppose in contradiction that there is a consensus protocol P for system

S3(1). By Theorem 8, system A3(1) simulates system S3(1). Thus, there exists a
simulation protocol P' such that P' in system A3(1) simulates P in system S3(1).
The protocol P' can be used to construct a consensus protocol for system A3(1)
simply by letting v-final states of P' be those states d such that d.sim is a v-final
state of P. Since P is a consensus protocol for system S3(1), there is a run R0 of

P in system S3(1) in which some processor enters a 0-final state and another run

R 1 of P in system S3(1) in which some processor enters a 1-final state. Since P' in
A3(1) simulates P in S3(1), there is a run R' of P' in system A3(1) that simulates

R0 , i.e., in which some processor enters a 0-final state, and another run R of P' in
system A3(1) that simulates RI, i.e., in which some processor enters a 1-final state.

Since P is a consensus protocol for S3(1). and since P is simulated by P', there is
no run of P' in system A3(1) with processors in conflicting final states, and some

processor eventually enters a final state in every run in system A3(1). Thus there
is a consensus protocol for system A3(1), contradicting the hypothesis. 0

Acknowledgment

I would like to thank Nancy Lynch for suggesting this problem to me, and
for many helpful ideas. Gil Neiger, Larry Stockmeyer and the referee pointed out

several errors and many points of confusion.

14

References

Dolev, D., Dwork, C., and Stockmeyer, L. (1987), On the minimal synchronism
needed for distributed consensus, J. Assoc. Comput. Mach., 34, to appear.

Fischer, M., Lynch, N., and Paterson, M. (1985), Impossibility of distributed con-
sensus with one faulty process, J. Assoc. Comput. Mach., 32, 374-382.

Lamport, L. (1978), Time, clocks, and the ordering of events in a distributed systcm,

Comm. A CM, 21, 558-565.

Neiger, G. and Toueg, S. (1986), Substituting for real time and common knowledge
in asynchronous distributed systems, TR86-790, Department of Computer Science,

Cornell University.

15L

W%[

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

